Does Genetic Diversity in a Dominant Tree Drive Biological Diversity? Population Genetic Structure and Diversity in a Dominant Riparian Tree

Honchak B. M., Allan, G. J., Meneses, N., Whitham, T. G., Shuster, S., and Keim, P.
Department of Biology, Northern Arizona University, S. Beaver St., Flagstaff 86001, AZ

Abstract

To investigate how genetic diversity affects biodiversity, we initiated studies of population genetic variation in cottonwoods. Cottonwoods frequently hybridize along river corridors and the hybrid zones typically harbor considerable genetic variation, which is strongly correlated with arthropod community diversity. To examine how genetic diversity within a single species of cottonwoods affects biodiversity, we are undertaking an analysis of population genetic structure in Fremont cottonwood in natural populations and in a common garden. Our initial analyses indicate differences in population genetic diversity and structure across several sites. Based on these results we choose populations to conduct our studies of within-species biodiversity and selected genotypes to plant in the common garden.

Introduction

Biological diversity is a key feature of riparian ecosystems, and is driven, in part, by species that dominate riparian landscapes. Cottonwoods are dominant riparian tree species found on river corridors throughout the American southwest and frequently hybridize along these corridors, forming extensive hybrid zones. We have genetically characterized a number of these hybrid zones and found a direct link between host plant genetic variation and arthropod community structure and diversity. A primary remaining question is whether there is sufficient genetic variation within a single species to drive the same patterns of biological diversity as observed in cottonwood hybrid zones.

In phase I of this study, we examine how genetic variation within a single cottonwood species (*Populus fremontii*) is partitioned geographically and whether there are significant among population differences in genetic diversity and structure. In particular, we ask the following questions:

1. Is genetic variation in *P. fremontii* geographically structured?

2. If genetic variation is geographically structured, are there significant differences in genetic diversity across populations?

If we identify populations that vary in their genetic structure and diversity, we will proceed with Phase II of our study, which is to examine how genetic diversity within a dominant tree species affects biological diversity and structure in dependent arthropod communities. These studies will be performed in natural populations and in common garden settings.

Methods

Leaf samples of *P. fremontii* were taken from natural populations from Arizona, Colorado, Nevada, and Utah (figure 1). These sites included the Lower Colorado River, San Pedro River, Verde River, Wupatki National Park, the Dolores River and two sites from Arches National Park. Individual trees were tagged and GPS coordinates were taken at each site. To assess population genetic structure and diversity in *P. fremontii*, we used fluorescent amplified fragment length polymorphism (FAPL) analysis. Population genetic structure was analyzed using tools for Population Genetic Analysis (TPGA; Miller 1999), which included standard diversity estimates, an estimation of among population variation (Fst), and Nei’s genetic distance. Population genetic structure and genetic divergence among populations were visualized using the UPGMA clustering algorithm. Among population differentiation was further analyzed using an analysis of similarity (ANOSIM) as implemented in DECODA (Minchin 2001). From this data, trees with genetically distant genotypes were selected and planted in the common garden in Cibola, AZ (figure 1 and 2).

Results

• AFLP analysis of 172 trees resulted in 127 loci, 72 of which were polymorphic (Table 1). Percent polymorphic loci for each population ranged from 20-61%.

• Estimation of heterozygosity of the populations ranged from 0.0329-0.1435.

• The overall Fst was 0.0164 and the overall F value was 0.001.

• The analysis of similarity (ANOSIM) showed that 95 out of 21 pairwise comparisons of the populations were statistically significantly different (Table 2).

• Nei’s genetic distance ranged from 0.10 - 0.60. Genetic distance trees using the UPGMA algorithm show that genetic divergence is highest in the Lower Colorado River, AZ population and lowest in the Dolores River, UT (Fig. 3).

• 16 distinct genotypes were selected to be planted in the Cibola garden (figure 2).

Genetic Diversity Statistics

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Lower Colorado River, AZ</th>
<th>San Pedro River, AZ</th>
<th>Verde River, AZ</th>
<th>Wupatki National Park, AZ</th>
<th>Dolores River, UT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intrasite Heterozygosity</td>
<td>0.1495</td>
<td>0.2111</td>
<td>0.20</td>
<td>0.1652</td>
<td>0.1800</td>
</tr>
<tr>
<td>Total Heterozygosity</td>
<td>0.2111</td>
<td>0.20</td>
<td>0.1652</td>
<td>0.1800</td>
<td>0.1800</td>
</tr>
<tr>
<td>Total Polymorphisms</td>
<td>72</td>
<td>72</td>
<td>72</td>
<td>72</td>
<td>72</td>
</tr>
<tr>
<td>Monomorphic Loci</td>
<td>55</td>
<td>55</td>
<td>55</td>
<td>55</td>
<td>55</td>
</tr>
<tr>
<td>Total Loci</td>
<td>127</td>
<td>127</td>
<td>127</td>
<td>127</td>
<td>127</td>
</tr>
</tbody>
</table>

Conclusions

Phase I of this study shows that there is both among and within population differentiation in *P. fremontii*. These two most genetically differentiated populations, Lower Colorado River and Dolores River, appear to be good candidates for proceeding with Phase II of our study. In Phase II we will investigate how among population genetic differences in cottonwoods do or do not affect arthropod community diversity. These studies will likely include additional genetic characterization of our candidate populations using codominant microsatellite markers. If our findings support the hypothesis that genetic diversity drives biodiversity, we will effectively demonstrate the important role that cottonwood trees play in promoting biodiversity in riparian ecosystems. These studies could also lead to a better understanding of the role that host plant genetics play in shaping plant-arthropod interactions over evolutionary time.

References

