An introduction to global climate modeling

Mike Crimmins Extension Specialist – Climate Science Dept. of Soil, Water, & Environmental Science The University of Arizona

Scientific Method

"The scientific method is the process by which scientists, collectively and over time, endeavor to construct an accurate (that is, reliable, consistent and non-arbitrary) representation of the world."

From http://teacher.nsrl.rochester.edu

Scientific Method

- 1. Observation and description of a phenomenon or group of phenomena.
- 2. Formulation of an hypothesis to explain the phenomena. In physics, the hypothesis often takes the form of a causal mechanism or a mathematical relation.
- 3. Use of the hypothesis to predict the existence of other phenomena, or to predict quantitatively the results of new observations.
- 4. Performance of experimental tests of the predictions by several independent experimenters and properly performed experiments.

From http://teacher.nsrl.rochester.edu

Climate Science?

mod-el

- a usually miniature representation of something; *also*: a pattern of something to be made
- an example for imitation or emulation
- a system of postulates, data, and inferences presented as a mathematical description of an entity or state of affairs; *also*: a computer simulation based on such a system

CSAP

From Merriam-Webster.com

Building Climate Models

- Create a conceptual model of the Earth's climate system
- Translate the conceptual model into mathematical formulas → develop computer code that connects the formulas together through systems, space and time
- Run the model through time
- Refine the model based on observed data

Adapted from http://nas-sites.org/climatemodeling

FIGURE 1.3 Climate models are mathematical representations of the physical, chemical, and biological processes in the Earth system. SOURCE: Marian Koshland Science Museum. NAS 2012

Fundamental Equations

- Temperature (T)
- Pressure (P)
- Winds (U,V)
- Humidity (Q)

• Conservation of momentum

$$\frac{\partial \vec{V}}{\partial t} = -(\vec{V} \cdot \nabla)\vec{V} - \frac{1}{\rho}\nabla p - \vec{g} - 2\vec{\Omega} \times \vec{V} + \nabla \cdot (k_m \nabla \vec{V}) - \vec{F}_d$$
• Conservation of energy

$$\rho c_{\vec{v}} \frac{\partial T}{\partial t} = -\rho c_{\vec{v}}(\vec{V} \cdot \nabla)T - \nabla \cdot \vec{R} + \nabla \cdot (k_T \nabla T) + C + S$$
• Conservation of mass

$$\frac{\partial \rho}{\partial t} = -(\vec{V} \cdot \nabla)\rho - \rho(\nabla \cdot \vec{V})$$
• Conservation of H_2O (vapor, liquid, solid)

$$\frac{\partial q}{\partial t} = -(\vec{V} \cdot \nabla)q + \nabla \cdot (k_q \nabla q) + S_q + E$$
• Equation of state

$$p = \rho R_d T$$

Calculated for each grid cell at each time step

But, What Is a GCM really?: A Computer Program

From http://serc.carleton.edu/eet/envisioningclimatechange/part 2.html

Global_Warming_Sim2.R Model II 8/24/2000

Owner: Dr. Mark Chandler, chandler@giss.nasa.gov Group: Paleoclimate Group This experiment simulates climate change based on a 1 percent/year increase in CO2

Object modules: MainC9 DiagC9 RadC9 FFTC9 UTILC9

Data input files: 7=G8X10_600Ma 9=N0V1910.rsf_snowball 15=08X10_600Ma 19=CD8X10_600Ma 23=V8X10_600Ma 26=Z8X101_600Ma 21=RTAU.G25L15 22=RPLK25 29=Snowball_Earth_Regions

Label and Namelist: Global_Warming_Sim2 (Transient increase in CO2)

&INPUTZ TAUI=10176.,IYEAR=1900, C** INITIALIZE SOME ARRAYS AT THE BEGINNING OF SPECIFIED DAYS

fName = './prt/'//JMNTH0(1:3)//CYEAR//'.prt'//LABEL1(

IF(JDAY.NE.32) GO TO 294 JEQ=1+JM/2 DO 292 J=JE0.JM DO 292 I=1, IM 292 TSFREZ(I, J, 1) = JDAYJEQM1=JEQ-1 DO 293 J=1, JEQM1 DO 293 I=1,IM 293 TSFREZ(I, J, 2)=JDAY GO TO 296 294 IF(JDAY.NE.213) GO TO 296 JEQM1=JM/2DO 295 J=1, JEQM1 DO 295 I=1.IM TSFREZ(I, J, 1)=JDAY 295 C**** INITIALIZE SOME ARRAYS AT THE BEGINNING OF EACH DAY 296 DO 297 J=1.JM DO 297 I=1, IM

> TDIURN(I,J,1)=1000. TDIURN(I,J,2)=-1000.

> TDIURN(I,J,6)=-1000.

PEARTH=FDATA(I,J,2)*(1.-FDATA(I,J,3))

Unix scripts and Fortran Code Requiring significant programming skills to operate

FIGURE 1.5 Global climate models are run on supercomputers, like the NOAA climate research supercomputer Gaea at Oak Ridge National Laboratory in Tennessee (pictured). It has a peak speed of 1.1 petaflops (more than 1,000 trillion calculations per second). SOURCE: ORNL photos/Jay Nave (http://blogs. knoxnews.com/munger/2011/12/noaas-petascale-computer-for-c.html).

NAS 2012

Run...compare...test...refine...run...

Who does climate modeling?

About WCRP CMIP3 Model Output

CMIP3 Climate Model Documentation, References, and Links

Last updated 17 July 2007

Originating Group(s)	Country	CMIP3 I.D.
Beijing Climate Center	China	BCC-CM1
Bjerknes Centre for Climate Research	Norway	BCCR-BCM2.0
National Center for Atmospheric Research	USA	CCSM3
Canadian Centre for Climate Modelling & Analysis	Canada	CGCM3.1(T47)
Canadian Centre for Climate Modelling & Analysis	Canada	CGCM3.1(T63)
Météo-France / Centre National de Recherches Météorologiques	France	CNRM-CM3
CSIRO Atmospheric Research	Australia	CSIRO-Mk3.0
CSIRO Atmospheric Research	Australia	CSIRO-Mk3.5
Max Planck Institute for Meteorology	Germany	ECHAM5/MPI-OM
Meteorological Institute of the University of Bonn, Meteorological Research Institute of KMA, and Model and Data group.	Germany / Korea	ECHO-G
LASG / Institute of Atmospheric Physics	China	FGOALS-g1.0
US Dept. of Commerce / NOAA / Geophysical Fluid Dynamics Laboratory	USA	GFDL-CM2.0
US Dept. of Commerce / NOAA / Geophysical Fluid Dynamics Laboratory	USA	GFDL-CM2.1
NASA / Goddard Institute for Space Studies	USA	GISS-AOM
NASA / Goddard Institute for Space Studies	USA	GISS-EH
NASA / Goddard Institute for Space Studies	USA	GISS-ER
Instituto Nazionale di Geofisica e Vulcanologia	Italy	INGV-SXG
Institute for Numerical Mathematics	Russia	INM-CM3.0
Institut Pierre Simon Laplace	France	IPSL-CM4
Center for Climate System Research (The University of Tokyo), National Institute for Environmental Studies, and Frontier Research Center for Global Change (JAMSTEC)	Japan	MIROC3.2(hires)
Center for Climate System Research (The University of Tokyo), National Institute for Environmental Studies, and Frontier Research Center for Global Change (JAMSTEC)	Japan	MIROC3.2(medres)
Meteorological Research Institute	Japan	MRI-CGCM2.3.2
National Center for Atmospheric Research	USA	PCM
Hadley Centre for Climate Prediction and Research / Met Office	UK	UKMO-HadCM3
Hadley Centre for Climate Prediction and Research / Met Office	UK	UKMO-HadGEM1

Evolution of climate models

Evolution of climate models

https://www2.ucar.edu/sites/default/files/news/2011/predictFlow2.jpg

Modeled Annual Precipitation across SW

Climate Assessment for the Southwest

Climate Experiments: Detection and Attribution

Case Example: Sensitivity of the Earth's Climate

Hansen et al. 2005

How 'good' are these models?

"...all models are wrong, but some are useful." --G.E. Box

Climate model reliability vs. scale and phenomena

	Global	Volcanic C impacts fe	limate Ad edbacks (cidifying oceans	Sea-level change	lce age Te cycles ch	ctonic nange	
	(10000 km)	Geoengineering Natural				CO ₂ burial		
Spatial extent (100) (10)	Regional (1000 km)	AO ENSO PDO Ocean ecosystem change Deep ocean Melting response sea ice Ice-sheet melt drying trends						
		Heat waves Droughts	Lar ecosy Clathra	nd surfac /stem cha ate desta	e/ ange bilization	Climate model reliability: High		
	Local (100 km)	Hurricanes Floods	Ice shelf stability Mountain gl	Permai thav	frost v lt	Medium Limited Low		
	(200)	1 yr	10 yr	100	0 yr 10	00 yr	10 ⁶ + yr	
		-	-	-				
	limate Science Application	ns Program - University of Arizon:	NAS 2	012 [*]		-		

cs

Climate model error

How are the climate models doing?

How are the climate models doing?

How are the climate models doing?

Arctic Sea Ice Extent - models & observations

CLIMAS Assessment for the Southwest

Using climate models

http://www.southwestclimatechange.org/files/cc/figures/projected-warming.jpg

Climate Science Applications Program - University of Arizona Cooperative Extension

CSA

Climate models: guiding decisions and anticipating

[†] Significant is defined here as more than 40%.

[‡] Based on average rate of sea level rise of 4.2 mm/year from 2000 to 2080.

Emission Scenarios and Temperature Projections

Range of projections

Closing Points

- Climate models are a necessary part of climate science → tool to capture complex interactions between different Earth systems
- Models and computational power have improved dramatically over the past decade, improving model performance
- Models will never be perfect; only a tool to inform decision making and risk management

Thanks!

crimmins@email.arizona.edu http://cals.arizona.edu/climate

Climate Change

What is causing climate change?

The Greenhouse Effect

From http://www.climatechange.gc.ca

Climate Assessment for the Southwest

Temperature Projections

USGCRP 2009

USGCRP 2009

CSAF

🔥 Climate Science Applications Program - Univ

Interactions between temperature and precipitation

- Confidence in continuation of increasing temperatures
- Projections on precipitation variability are less clear
- Increasing temperatures alone will increase aridity

Hoerling & Eischeid 2007

Global Temperature and Carbon Dioxide

CSA

